
A Practical Cross-Layer Approach for ML-Driven
Storage Placement in Warehouse-Scale Computers

Abstract
Storage systems account for a major portion of the total cost

of ownership (TCO) of warehouse-scale computers, and thus

have a major impact on the overall system’s efficiency. Ma-

chine learning (ML)-based methods for solving key problems

in storage system efficiency, such as data placement, have

shown significant promise. However, there are few known

practical deployments of such methods. Studying this prob-

lem in the context of real-world hyperscale data center de-

ployments at AnonCorp, we identify a number of challenges

that we believe cause this lack of practical adoption. Specifi-

cally, prior work assumes a monolithic model that resides

entirely within the storage layer, an unrealistic assumption

in real-world data center deployments. Additional challenges

include adaptability, reliability, and interpretability.

We propose a cross-layer approach that moves ML out of

the storage system and performs it in the application run-

ning on top of it, co-designed with a scheduling algorithm

at the storage layer that consumes predictions from these

application-level models. This approach combines small, in-

terpretable models with a co-designed heuristic that adapts

to different online environments.

We build a proof-of-concept of this approach in a pro-

duction distributed computation framework at AnonCorp.

Evaluations in a test deployment and large-scale simulation

studies using production traces show improvements of as

much as 2.48× in TCO savings compared to state of the

art baselines. We believe this work represents a significant

step towards more practical ML-driven storage placement

in warehouse-scale computers.

Keywords: Machine Learning for Systems, Data Placement

Optimization, Data Centers, Storage Systems

1 Introduction
Storage systems comprise a large part of data centers’ total

cost of ownership (TCO). Even small improvements in stor-

age system efficiency can have a major impact on the overall

costs. Improvement as low as 1% represents a large amount

in the context of hyperscale data centers, which see billions

of dollars of investment [25]. Data placement – e.g., decid-

ing whether a file should be stored on hard disk (HDD) or

solid state drives (SSD) – is an important decision impacting

the efficiency and costs in data center storage systems. This

problem is also known as storage tiering and has been the

subject of a large amount of research [8, 18, 30].

Figure 1. Individual workloads characteristics: Workloads

share drastically different resource usage patterns.

In this paper, we focus on a particular instance of this

problem: placement of intermediate files in data processing

frameworks such as Apache Beam [26] or Apache Spark

[40]. These frameworks consume data sets that can reach

petabytes in size [34] and perform large-scale computations

on this data. These computations move data between a large

number of servers and repeatedly materialize data as inter-

mediate files. These intermediate files themselves alone can

account for a significant portion of storage resources in a

data center (up to 35% in some clusters). Currently, there are

two approaches to the tiering problem in these frameworks:

• Heuristics, such as greedily allocating data to SSDs

until capacity is reached and then using HDDs for

overflow [3, 9, 35, 37, 38]. These heuristics are deployed

and represent today’s state-of-the-art. They are fast

and interpretable, but perform suboptimally when SSD

capacity is limited.

• Machine Learning (ML) approaches that learn and

leverage real-world workload information [42]. Few of

these approaches are practically deployed due to con-

siderations such as run-time overhead, adaptability, or

decomposition challenges, and risks associated with a

model becoming a single point of failure [23, 28].

To understand the challenges behind adoption of ML in

real-world scenarios, we analyzed our real-world produc-

tion systems at AnonCorp. Data centers run a wide range

of workloads with vastly different characteristics (Figure 1).

Workloads arrive and evolve at a high rate, and data ac-

cess patterns are highly dynamic and application-specific.

Data centers deal with this issue through abstraction layers,

such as the application, storage or hardware layer: For ex-

ample, the application layer does not need to worry about

the specifics of the hardware, and the storage layer does not

need to know any details about the inner workings of each

1

Storage Layer

… Applications

Model

Model

HardwaresHardware

Monolithic Approach Cross-Layer Approach

App
Model

App
Model

App
Model

App
Model

App
Model

App
Model

AppAppApp

App App App

…

Figure 2. Conceptual overview of the monolithic approach

vs. the cross-layer approach.

application. This enforces separation of concerns and allows

these components to operate and evolve independently.

We posit that this is the key challenge behind existing

proposed ML methods. Existing ML works mostly treat the

end-to-end data placement as one problem and assume a

monolithic model deployed within the storage system [15,

22, 32, 42]. Such a model might be trained on file names

or common application behavior [42]. While this approach

works in simulation, it breaks the separation of concerns,

which is problematic in real-world large-scale systems. For

instance, changes to a major application that, e.g., affect file

names would need to trigger a retraining of the model at the

storage layer, which needs to roll out behavior changes at a

much lower velocity than the workloads.

Our design embraces the multi-layer characteristic of stor-

age systems and presents a practical solution to these prob-

lems by combining cheap and interpretable ML models at

the application layer with a custom algorithm that leverages

their predictions at the storage layer. Instead of a single large

ML model, we build smaller models for individual workloads,

which produce hints that the storage layer can utilize to place

the workload’s data (Figure 2).

We first present a headroom analysis to fully understand

the potential upside from ML over traditional heuristics. We

formulate the data placement problem into an Integer Linear

Programming (ILP) problem and use a solver to determine

optimal placement decisions for each job. We find that these

optimal decisions from an ILP solver can achieve 3.44× the

cost savings of a state-of-the-art heuristic approach (but

require clairvoyant knowledge).

Prior work has proposed imitation learning against such

an oracle [22] which assumes a monolithic model for data

placement in storage systems. However, we find that this

approach does not work in our deployment, since the model

does not only need to make decisions for individual work-

loads but adapt to an environment that is changing due to

external factors (e.g., varying load patterns and workloads

arriving or leaving). We thus devise a cross-layer approach

to tackle this adaptability problem. At the application layer,

we analyze the data properties that contribute to the opti-

mal placement. We then design a category model to predict

the ranking of these properties, which is independent of

Production Workload

Offline Online

Analysis
Model design

Model

Adjust admissible category
threshold

S
S

D
H

D
D

Place on
SSD/HDD

Oracle

Train Predict

Storage LayerApplications

Job

In/Outside admission set

Output

Data

Figure 3. Left: Data flow graph in a data processing frame-

work. Data is processed in parallel and its jobs create inter-

mediate files (blue) which are inputs for the next processing

step. Right: Approach Overview. We analyze production

workloads offline for model design and training. Online, each

application’s model predicts job properties and passes the

prediction to the storage layer for job placement.

online fluctuations of the environment and other applica-

tions. Finally, we design an adaptive algorithm at the storage

layer to select the data to place on SSD based on the model

predictions from all applications and system feedback.

We demonstrate our approach in the context of a real pro-

duction data processing framework at AnonCorp. We show

its practicality by developing a prototype of our approach

and running it in a test deployment. We also perform an

extensive simulation study based on real-world production

traces from AnonCorp’s data centers. We show that our ap-

proach can lead to an additional 3.2% TCO savings, more

than 2.48× the savings from the production baseline. We

summarize our contributions as:

• Within a real-world production setup, we investigate

ML for storage placement from a new perspective, with

a focus on practicality in production settings.

• Wedesign and implement a novel cross-layer approach,

combining ML and heuristics that can adapt across

workloads and external factors in data centers.

• We prototype the proposed ML integration to show

its realizability in a real production codebase.

• We evaluate our method at scale with real production

traces and achieve 2.48× TCO savings compared to

state-of-the-art baselines.

We first present background on storage systems and produc-

tion constraints (Section 2), and formulate our optimization

problemwith baselines (Section 3). We then discuss our main

approach, introducing our ML method design (Section 4.2)

and scheduling algorithm (Section 4.3). We next show de-

tailed prototype and large-scale simulation studies (Section 5)

of our approach. Finally, we present related work (Section 6)

and conclude (Section 7).

2 Background
2.1 Storage for Data Processing Frameworks
Modern data processing frameworks, such as Apache Beam,

structure their computations as data flow graphs (Figure 3,

2

left). Each node (or step) within the graph represents a com-

putation step. Edges represent the flow of data. Computa-

tions are highly parallel, and a distributed framework spawns

workers to execute tasks. A worker is a process that runs on

a server. Data is generally passed between workers through

shuffle jobs. A shuffle job is generated when the execution of

the workflow reaches a step or operation that necessitates

the exchange of information. As an example, GroupByKey

is a common operation across frameworks that generates

one or more shuffle jobs. During a shuffle job, workers write

their data as intermediate files to a distributed file system

[4, 10, 31] and read it in subsequent steps. The access pat-

terns to the files depend on the specifics of the computation,

such as filtering, grouping, or sorting. One shuffle job can

operate on multiple intermediate files.

2.2 SSD/HDD Tiering and its Trade-Offs
Storage cost falls into several different categories: 1) the

amount of storage (e.g., in GiB) occupied by the data, 2)

wearout of devices such as SSD, which degrade with every

write, and 3) the amount of I/O operations (i.e., read or write

requests to a storage device per unit time sustained by the

device). SSDs and HDDs have different trade-offs among all

three dimensions. SSDs provide much larger amounts of I/O

with a higher cost per GiB and write-induced wearout. In

contrast, HDDs are ideal for large amounts of data and long

sequential access patterns that introduce few I/O operations.

At the same time, SSDs are ideal for random, small accesses

– if the resulting wearout can be tolerated. In practice, inter-

mediate files in data processing pipelines can fall into either

category (or, more commonly, in between), which makes the

data placement problem challenging.

2.3 Production Requirements and Limitations
Data centers accommodate a vast array of workloads with di-

verse behavior patterns. Employing a single model to jointly

learn all workloads introduces a single point of failure, and

requires the model to be large and complex, and thus ex-

pensive and difficult to interpret. Further, this approach re-

quires all input features be reliably delivered to the stor-

age system, when some of the most predictive features are

workload-specific [42]. Finally, In hyperscale data centers,

workloads exhibit significantly faster rates of change com-

pared to the deployment and update cycles of storage sys-

tems. This causes a dilemma: 1) Rolling out the model with

the storage system means it is stale by the time it reaches

production; 2) updating the model independently of the stor-

age system means that it is not tested as rigorously as the

rest of the system, becoming its weakest link.

To address these problems, we propose a more granular

approach where each workload has its own dedicated model

to produce a hint, which is then reliably passed to the storage

system. This hint indicates, for example, how well a file

can be cached. Since workloads “bring their own model”,

models evolve at the velocity of the workload rather than

the storage system. Because the models are smaller, they are

cheaper and more interpretable. They are distributed across

many workloads hence they can use more features and are

more robust: a model failure only affects one workload. In

this work, we focus on optimizing data placement for data

processing pipelines, but our cross-layer design is general.

Training a model offline and deploying it online is chal-

lenging, since a static model cannot adapt to evolving work-

load patterns, which are prevalent in real-world scenarios.

To address this issue, we present an adaptive strategy that

utilizes online observations to inform placement decisions.

Models can introduce non-trivial overheads. For example,

prior work suggested using Transformers, which are known

for their superior learning capabilities but can be compu-

tationally expensive, incurring prediction costs of approxi-

mately 99ms per prediction [42]. To balance performance and

efficiency, we leverage gradient boosted trees as the learn-

ing model, providing a compromise between lightweight,

low-performance models and powerful, expensive models.

3 Problem Formulation and Baselines
We now discuss the data placement problem concretely. Our

basic data placement unit is a shuffle job. A program can have

from 0 to hundreds of shuffle jobs. We track four attributes

for each job: (start time, lifetime, job size, cost). Job size is

measured in bytes. A cluster has an SSD capacity. The place-

ment algorithm produces a mapping: job → {SSD,HDD}.
Performance is measured in savings. First, we measure

how much HDD I/O can be reduced. Moving jobs to SSDs

can free up HDD for I/Os that cannot be moved away from

HDD (such as accesses of cold data). We quantify the savings

in HDD I/O through a metric we call Total Cost of I/O (TCIO),

where 1.0 is the amount of I/O that a representative hard

drive can sustain per second. TCIO of jobs on SSDs is zero.

Second, we also measure monetary savings. For simplic-

ity, we only consider the change in storage costs and ignore

costs from other parts of the job (CPU, RAM, etc.) We define

Storage Total Cost of Ownership (simply referred to as TCO

from now on), which covers the total expenditure in dol-

lars associated with acquiring, operating, and maintaining

a storage system. The TCO for HDD and SSD are defined

differently due to the nature of devices. Substitute Dev for

HDD or SSD below to get the respective definition:

TCO
Dev = cost

Dev

byte
+ cost

Dev

network
+ cost

Dev

server
+ cost

Dev

specific

cost
Dev

byte
= byte_cost

Dev · size · duration

cost
Dev

network
= network_cost_rate · IO_throughputDev

· duration
cost

HDD

server
= server_cost_rate

HDD · TCIO · duration
cost

SSD

server
= server_cost_rate

SSD · write_throughput
3

cost
HDD

specific
= device_cost_rate

HDD · TCIO · duration

cost
SSD

specific
= wearout_cost_rate

SSD · total_written_bytes
where ∗_cost_rate denotes conversion rates to dollar cost;

cost
Dev

byte
denotes the cost of storing one byte for one sec-

ond on a device; TCIO, size, and duration denote a job’s

TCIO need, storage footprint, and duration (for example, if

a job has a TCIO of 2, the job would need two HDDs to

run). The cost
Dev

network
is a value derived from the data cen-

ter total network cost of transmitting data at the maximum

throughput divided by the throughput per second. cost
HDD

server

and cost
HDD

specific
cover the cost of the servers and HDDs.

In our practice, we found that the server cost for run-

ning a job on SSD correlates with the bytes transmitted.

Because all SSD devices have a limit on the amount of Pro-

gram/Erase (P/E) cycles and each write causes a loss in mon-

etary value, the cost
SSD

specific
is included to cover these wearout

costs. wearout_cost_rate
SSD

is calculated from the specific

SSD drive model’s total bytes written rating.

Oracle: Optimal Solution Based on Solver. To better

understand the headroom that is available if we achieve per-

fect data placement, we employ an oracle. It is an upper

bound on the best solution, but impossible to implement.

The oracle policy is based on using an Integer Linear Pro-

gramming (ILP) solver by assuming clairvoyant knowledge

— that is, assuming we know the future access pattern.

We formulate the placement problem as an ILP problem.

The SSD space limit is𝑀 and we assume the HDD space is

infinite due to its lower cost per GiB. 𝑋 = ⟨𝑥0, . . . , 𝑥𝑁 ⟩ is a
sequence of arriving jobs. Job 𝑖 , represented by variable 𝑥𝑖 ,

arrives at time 𝑎𝑖 , ends at time 𝑒𝑖 , and it needs 𝑠𝑖 space with

𝑐SSD𝑖 cost to put on SSD, 𝑐HDD𝑖 cost to put on HDD. Oracle

optimization can either optimize for TCIO or TCO. We use

a binary variable, 𝑥𝑖 , to denote the data placement decision,

𝑥𝑖 = 1 if 𝑖 is put on SSD, and 𝑥𝑖 = 0 if 𝑖 is put on HDD. Once

placed, a job 𝑥𝑖 runs from 𝑎𝑖 to 𝑒𝑖 and 𝑝𝑖 (𝑡) = 𝑥𝑖𝑠𝑖 represents

the job’s SSD consumption at time 𝑡 ∈ [𝑎𝑖 , 𝑒𝑖]. Now the

problem becomes maximizing the savings by placing jobs

on SSD under space constraints (SSD space is limited):

max

∑
𝑖∈𝑙

𝑥𝑖 (𝑐HDD𝑖 − 𝑐SSD𝑖)

subject to: 𝑥𝑖 ∈ {0, 1},∀𝑖 ∈ [0, 𝑁]
𝑝𝑖 (𝑡) = 𝑥𝑖𝑠𝑖 ,∀𝑖 ∈ [0, 𝑁], 𝑎𝑖 ≤ 𝑡 ≤ 𝑒𝑖∑
𝑖∈[0,𝑁],𝑎𝑖 ≤𝑡 ≤𝑒𝑖

𝑝𝑖 (𝑡) ≤ 𝑀,∀𝑡 ∈ 𝑇

𝑇 = max{𝑒𝑖 : 𝑖 ∈ [0, 𝑁]}
We run the above ILP with the historical production work-

load data and find the optimal placement decisions that save

the maximum amount of cost. The solver is optimal because

it has clairvoyant knowledge. The clairvoyant knowledge in-

cludes information that is not available at a job’s placement

decision time in practice: 1) The solver knows the global job

ranking in terms of cost savings and would prioritize putting

high cost saving jobs onto SSD. 2) The solver knows the

workload patterns and places jobs that would monopolize

SSD resources on HDD instead.

In addition to clairvoyant knowledge, the oracle needs a

fixed SSD capacity limit for optimal placement. However, we

do not have such knowledge ahead of time as the data center

is shared between many jobs (not just data pipelines) and

free SSD capacity fluctuates over time. Thus, a solution that

can apply under varying SSD capacities is needed.

FirstFit: Static Placement. Production systems commonly

perform HDD/SSD tiering using FIFO or LRU-style heuris-

tics [9, 36]. We implement a representative instance of such

a heuristic. We try to place jobs on SSD in the order of their

start times. This approach optimizes TCIO when unlimited

SSD is available but can significantly increase TCO when

SSD capacity is limited or expensive. This baseline checks

a job’s peak space usage and decides only to place jobs on

SSD that fit the SSD availability.

Heuristic: PracticalAdaptive Placement.Recently, he-
uristics that can dynamically adapt to workloads have been

introduced, striking a balance between dynamically learning

behavior and avoiding the practicality issues in Section 2.3.

We emulate the state-of-the-art placement approach from

[38]. It focuses on a slightly different problem (SSD read

cache admission), but can be adapted for our placement task.

We use this approach as a stand in for the closest practical

approach to a learning-based baseline.

The approach starts from a set of categories associated

with storage requests and then constructs a per-category

admission policy based on dynamic behavior. In our exper-

iments, we use the job’s ID as the category. For each job

category, the approach measures space usage and TCO sav-

ings. We rank the categories by their TCO savings and add

categories into an admission set until the selected category’s

historical space usage reaches the SSD capacity. When a new

job arrives, we decide to place it on SSD if it belongs to the

admission set. Otherwise, the job is placed on HDD.

MLBaseline: LifetimePrediction for SSD /HDDTier-
ing.We include another closely related ML-driven approach

[42], which models storage problems in data centers as distri-

bution prediction problems. We follow the SSD/HDD tiering

case study in [42] to predict the mean (𝜇) and standard devia-

tion (𝜎) of a file lifetime. Files with a predicted lifetime (𝜇+𝜎)
shorted than the specified time-to-live (TTL) are admitted

to SSD. To mitigate potential mispredictions, we evict any

file residing in the SSD for longer than 𝜇 + 𝜎 following [42].

4 Hybrid Learning Approach
One frequent approach to ML-driven systems is to train a

model that learns to make decisions, such as whether to

place a file on SSD or HDD – e.g., via imitation learning [22].

However, data centers are highly dynamic environments and

4

Figure 4. I/O density and TCO savings of each job (color

shows oracle placement decision when optimizing for TCO).

Tested under different SSD quota.

the optimal decision depends on external factors such as the

available amount of SSD at a given point in time. Thus, a

model would need to jointly learn the external environment

and the workload, which is challenging and not deployable,

requires a possibly prohibitive amount of training data, and

may be brittle when encountering new scenarios.

To address this and our other challenges (Section 2.3), we

propose a cross-layer learning approach that uses the model

only to predict a proxy for workload-specific characteristics

and then co-designs a storage-level heuristic to turn the

predictions into decisions for the current environment.

Specifically, we want to design a proxy that correlates

with one job’s TCO savings. The proxy allows predicted re-

sults to directly represent how a job’s placement contributes

to end-to-end cost savings. We define such a contribution

as “importance” and train a categorical pointwise ranking

model (category model) to learn the job’s importance ranking

(Figure 3 right). Each category maps to a set of importance

rankings. A higher ranking indicates a more important job

– placing it on SSD saves more cost. When making a place-

ment decision, we query the model for an importance ranking

category for a new job. We then run an adaptive category

selection algorithm with dynamic feedback from the storage

layer to decide the admissible importance ranking categories

onto SSD and the predicted category’s admissibility.

4.1 Features
We train our model on application-level features from pro-

duction traces. The features span execution metadata, job

timestamps, allocated resources, and historical system met-

rics, which reflect how jobs are processed in our cloud center.

At a high level, a job comprises three steps. We assume

that each worker possesses a number of data records in the

working memory. In the first step, each worker writes the

data it owns into raw intermediate files. Accessing the data

in these raw files is inconvenient because they lack a specific

order. To address this issue, sorters organize the data records

in these files into sorted intermediate files as part of the

second step. Thirdly, the workers retrieve their required data

from the sorted intermediate files back into their working

memory, concluding the job. If feasible, these three steps can

be executed concurrently, resulting in temporal overlap.

The I/O density of jobs depends on how these data records

are written and read, so we provide as much internal job-

related information from the framework to the model as

possible. Internally, the data a workflow needs to process

is divided into buckets. A bucket is a unit of work that is

assigned to a worker. Each bucket contains a set of tasks

that are executed by a single worker. The number of buckets

is determined by the data to be shuffled and the number

of workers available. Buckets are used to ensure that work

is distributed evenly across workers and that no worker is

overloaded.

In the first step of a job, the worker shards the data in each

bucket into shards, and each shard is assigned to a writer

for being written to storage. A writer packs data into stripes

and writes one stripe at a time. This enables parallel writing

and faster write throughout.

The feature we choose (Table 1) reflects how these steps

are executed (allocated resources, execution metadata). Ex-

ecution metadata is formatted as strings that detail the ex-

ecution path and location. Key elements are separated by

non-alphanumeric characters. We treat execution metadata

as a sequence of substrings representing the key elements

(Table 2). Since executions may run periodically, we also

include the weekday and hour of the day of a job’s start time.

The allocated resource information represents resources as-

signed to the job by the cluster scheduler, before it starts

execution. However, specific details regarding resource dis-

tribution, such as the assignment to SSD or HDD, are not

determined at this stage. In addition, we also incorporate

properties of previously completed jobs from the same user’s

pipelines, including the past TCIO, job lifetime, and size.

4.2 Model Design
We use gradient boosted trees instead of neural networks

(which are much more expensive and less interpretable) or

lookup tables (which sacrifice accuracy). We build on the

Yggdrasil Decision Forests framework [11]. Our model is

trained on features in Section 4.1.

Quantifying Job Importance. Our goal is for the model

to determine each job’s importance, which is equivalent to

the expected cost savings. We first want to design a way to

represent the job importance. We examine the oracle place-

ment (from Section 3) under different SSD capacities. We

expect the most important jobs to be admitted by the oracle

even under extremely limited SSD capacity, and as the SSD

capacity increases, less important jobs are admitted.

For each job, we compute a binary placement decision

(SSD/ HDD) from the oracle with different SSD capacity lim-

its. In Figure 4, we show how oracle decisions correlate with

TCO savings and I/O density, which denotes the total I/O

across the job lifetime divided by its maximum storage foot-

print. As the SSD capacity increases, more jobs wıth lower

I/O density are chosen for SSD. Since the oracle optimizes

for TCO savings, jobs with negative TCO savings if put on

5

Features Feature Group Description

average_TCIO Historical system metrics Average TCIO of the job’s historical executions.

average_size Historical system metrics Average peak intermediate file size of the job’s historical executions.

average_lifetime Historical system metrics Average job historical lifetime.

average_I/O density Historical system metrics Average I/O density of the job’s historical executions.

bucket_sizing_initial_num_stripes Allocated resources The initial number of stripes a shard is expected to be divided into.

Each stripe contains a couple of data records.

bucket_sizing_num_shards Allocated resources The number of shards the working set is expected to be sharded into.

bucket_sizing_num_worker_threads Allocated resources Number of worker threads.

bucket_sizing_num_workers Allocated resources Number of workers in this job.

initial_num_buckets Allocated resources The initial number of buckets the job uses when it was started.

num_buckets Allocated resources The number of buckets the current job actually uses.

records_written Allocated resources The number of records to be shuffled for a shuffle job.

requested_num_shards Allocated resources Number of shards the current working set is requested to be sharded into.

open_time_dayhour Job timestamp The hour of the job start time.

open_time_seconds Job timestamp The second of the job start time.

open_time_weekday Job timestamp The week day of the job start date.

build_targetname Execution metadata The target in the build file that is used to build the executable binary.

execution_name Execution metadata A user-assigned identifier for the job. Usually set to the binary file name.

pipeline_name Execution metadata Name of the pipeline the job belongs to. A pipeline contains multiple jobs.

step_name Execution metadata A computer generated step identifier from the workflow’s execution graph.

user_name Execution metadata Name of the workflow step that is starting the shuffle job.

Table 1. Feature details.

Features Example Values

build_targetname //storage/ /build_manager:

execution_name

com. . . .trigger2.launcher.Main

pipeline_name

org _indicator_metrics.

-dims_prod. .data_importer

step_name -open-shuffle10

user_name GroupByKey-22

Table 2. Execution metadata feature examples.

SSD should never be selected. Further, if two jobs have the

same I/O, short-lived and small-sized jobs are preferred as

less SSD capacity and usage time is occupied. This suggests

that predicting the sign of TCO savings and I/O density is a

good proxy for job importance: negative TCO saving jobs

are least important; jobs with higher I/O density are more

important.

Label Design. Predicting precise values of these proper-
ties has been shown to be challenging, even in theoretical

works – e.g., lifetime in [42]. Rather than treating the im-

portance prediction problem as regression, we choose a cat-

egorical pointwise ranking model, which groups jobs with

similar (TCO savings, I/O density) into the same category

– same importance ranking class. The idea of framing the

output prediction issue as a classification task is commonly

adopted in the fields of image and audio analysis [17, 21].

To pick these specific categories, we need to take into

account that our goal is for these categories to provide a

ranking of the “importance” of placing each job on SSD.

First, negative TCO saving jobs should have the lowest rank-

ing and we set aside one category specifically for these jobs.

For the remaining categories, our goal is to cluster jobs by

their I/O density. We found that both linear and logarithmi-

cally spaced categories would result in a heavily imbalanced

data set (Figure 4). Therefore, we choose the categories so

that they evenly divide the training set by I/O density (e.g.,

top 10%, top 20%, top 30%, etc.) For a model with 𝑁 cate-

gories, this results in the following category labels, given

TCO savings 𝑥 .𝑚, I/O density 𝑥 .𝑛, and training set size 𝐷 :

C(x) =


0, if 𝑥 .𝑚 < 0

𝑘, if 𝑥 .𝑛 ∈ (top 𝑁−𝑘
𝑁−1 ∗ 𝐷, top

𝑁−𝑘−1
𝑁−1 ∗ 𝐷]

and 𝑥 .𝑚 ≥ 0

(1)

4.3 Adaptive Category Selection Algorithm
We now discuss how our cross-layer design combines the

learned category model and a heuristic-based algorithm

for online data placement. As mentioned in Section 4, the

model’s category prediction is independent of the SSD ca-

pacity. How to select the categories to place on SSD under

different SSD capacities is unknown. A simple approach is

to fix the admittable categories and always only place jobs

predicted in these categories onto SSD. However, this strat-

egy can only work when we have a hard constraint about

the category admission, e.g. we should never admit negative

TCO saving jobs. As shown in Figure 4, when we have larger

SSD capacities, we want to admit more jobs compared to the

smaller capacities case – that is, more categories.

Algorithm Overview. Our algorithm makes the admis-

sion decisions based on real-time feedback regarding SSD

utilization. When observing limited SSD capacity, we gradu-

ally decrease the number of categories to admit. Otherwise,

we admit more categories. Since our category model predicts

the “importance ranking” of jobs, admitting fewer categories

6

Algorithm 1 Adaptive Category Selection Algorithm

input model𝑀𝑁 , 𝑋 = ⟨𝑥0, . . . , 𝑥𝑛⟩, 𝑡𝑤 , 𝑇SpilloverTCIO, 𝑡𝑙 .
1: Initialize 𝑡𝑑 = 0, ACT = 1 and 𝑋ℎ = ∅.
2: for 𝑥𝑖 in 𝑋 do
3: Get the current time stamp as 𝑥 ’s arrival time 𝑡𝑖 = 𝑥𝑖 .𝑡𝑎

if Last admission decision is expired: 𝑡𝑖 ≥ 𝑡𝑑 + 𝑡𝑙 then
4: Update look back window endpoint𝑤𝑠 ,𝑤𝑒 = 𝑡𝑖 − 𝑡𝑤 , 𝑡𝑖
5: Remove expired jobs: 𝑋ℎ = 𝑋ℎ − {𝑥 𝑗 |𝑥 𝑗 .𝑡𝑎 <= 𝑤𝑠 }
6: Update the spillover percentage from 𝑋ℎ :

ℎSpilloverTCIO = 𝑃SpilloverTCIO (𝑋ℎ, 𝑡𝑖)
if ℎSpilloverTCIO < 𝑇𝑙 then

7: ACT = max(𝑁 − 1,ACT + 1) end
if ℎSpilloverTCIO > 𝑇𝑢 then

8: ACT = min(1,ACT − 1) end
9: Update decision making time 𝑡𝑑 = 𝑡𝑖 end
10: Infer the predicted category 𝐶𝑖 = 𝑀𝑁 (𝑥𝑖 .features)

if 𝐶𝑖 ≥ ACT then
11: Place 𝑥𝑖 onto SSD else
12: Place 𝑥𝑖 onto HDD end
13: Add the job into the observation history 𝑋ℎ = 𝑋ℎ ∪ 𝑥𝑖
14: end for

Symbol/Notation Meaning

𝑋 = ⟨𝑥0, 𝑥1, . . . , 𝑥𝑛⟩ job sequence

𝑥 .features job features available before execution

𝑥 .Dev job scheduled device (0/1 for HDD/SSD)
𝑡𝑎, 𝑥 .𝑡𝑎 job arrival time

𝑡𝑠 , 𝑥 .𝑡𝑠 job spillover time

𝑡𝑒 , 𝑥 .𝑡𝑒 job end time

TCIOHDD (𝑡) job TCIO if put onto HDD till 𝑡

SpilloverTCIO(𝑥, 𝑡) job spillover TCIO at 𝑡

𝑃SpilloverTCIO (𝑋, 𝑡) jobs spillover TCIO percent at 𝑡

𝑡𝑤 look back window time length

𝑡𝑙 admission decision effective time length

𝑇SpilloverTCIO = [𝑇𝑙 ,𝑇𝑢] spillover tolerance range

𝑡𝑑 the last placement decision making time

𝑋ℎ job observation history

ACT admission category threshold (≤ 𝑁 − 1)
𝑀𝑁 decision tree model with 𝑁 categories

Table 3. Algorithm notation.

naturally leads to admitting the most important jobs. Admit-

ting more categories means that we broaden the admission

set by adding less important but still cost saving jobs. We use

a sliding category admission threshold to determine what

part of the predicted categories get placed on SSD.

SSD Usage Approximation. In cloud data centers, the

actual SSD capacity varies among clusters, which is also hard

to directly approximate in practice. The criteria for deter-

mining whether an SSD is nearly full (i.e. can not fit more

jobs) or not are influenced by workload patterns. Thus, we

introduce a metric to unify the measurement of SSD capacity

usage across clusters and workloads through job behavior

observation. Given a sequence of jobs, 𝑋 = ⟨𝑥0, 𝑥1, . . . , 𝑥𝑛⟩,
we introduce spillover TCIO percentage, 𝑃SpilloverTCIO (𝑋, 𝑡),
to measure the portion of all job 𝑥𝑖 ’s TCIO that is scheduled

to be put onto SSD but ends up on HDD due to the fact that

the SSD has already reached its full capacity at timestamp 𝑡 :

𝑃SpilloverTCIO (𝑋, 𝑡) =
∑

𝑥𝑖 ∈𝑋 SpilloverTCIO(𝑥𝑖 , 𝑡)∑
𝑥𝑖 ∈𝑋 𝑥𝑖 .Dev · 𝑥𝑖 .TCIOHDD (𝑡)

where SpilloverTCIO(𝑥, 𝑡) is the amount of spill over TCIO

of a job 𝑥 at time 𝑡 . 𝑡𝑠 is 𝑥 spillover time:{
𝑡−𝑡𝑠
𝑡−𝑡𝑎 TCIOHDD (𝑡), if 𝑡𝑠 exists and 𝑡𝑎 ≤ 𝑡𝑠 ≤ 𝑡

0.0, Otherwise.

Notation is in Table 3. Intuitively, SpilloverTCIO measures

the amount of the job’s scheduled TCIO savings that are not

realized. A large 𝑃SpilloverTCIO means that few jobs can be

successfully scheduled onto SSD, which indicates that the

SSDs are nearly full.

Algorithm Design.We now introduce the adaptive cate-

gory selection algorithm in Algorithm 1 with notation avail-

able in Table 3. In the algorithm, we keep track of an obser-

vation history 𝑋ℎ , which contains all the jobs starting within

a fixed look back window, and calculate the SpilloverTCIO

within the history, ℎSpilloverTCIO. Then, we adaptively ad-

just the admission category threshold (ACT) based on the

observed 𝑃SpilloverTCIO – if 𝑃SpilloverTCIO is larger than ACT,

we increase the threshold to admit fewer categories. One

issue of a dynamic control system of this kind is that ACT

may change drastically. We provide two designs to smooth

the threshold change:

• We use a spillover tolerance interval, 𝑇SpilloverTCIO.

When the observed SpilloverTCIO falls into the in-

terval, we maintain ACT. If 𝑃SpilloverTCIO is below the

lower bound of 𝑃SpilloverTCIO, we decrease the thresh-

old by 1 (to avoid large adjustments). Conversely, for

high 𝑃SpilloverTCIO, we increase the ACT by 1. This

provides more flexibility for ACT adjustments.

• The threshold update is triggered by job arrival and

the decision interval 𝑡𝑙 seconds instead of simply job

coming to decrease the threshold change times.

When we designed the algorithm, we discovered that consid-

ering all the jobs starting within the look back window can

result in a more accurate estimate of the latest SSD usage

information than using all the jobs overlapping the look back

window. We think this could be the result of jobs with a long

lifetime having an outsize effect in such a setting.

5 Evaluation
We study the following research questions for evaluation:

RQ1: What is our method’s performance when integrated

into AnonCorp’s system?

RQ2: What are our method’s TCO and TCIO savings?

RQ3: What are our method’s TCO savings under different

SSD space constraints?

RQ4: How does our method generalize across clusters, or

perform with new users and pipelines?

7

RQ5: Is our ML model practical? Which features contribute

most to learning?

RQ6: How sensitive is our method under different hyperpa-

rameters? What are the important parts of our design?

RQ7: How does the adaptive ranking algorithm look like?

5.1 Experimental Setup
Metrics. We evaluate our performance using two metrics:

TCO savings percentage and TCIO savings percentage. As

mentioned in Section 3, the TCO in our work includes the

total expenditure of maintaining a storage systems (such as

I/O cost, SSD wearout, etc). We present the results with the

percentage of TCO savings over the total TCO if all jobs are

put on HDD. The TCIO measures the actual I/O cost without

calculating the SSDwearout cost. Given that the SSDwearout

cost could differ in different contexts, we believe showing

TCIO can help understand the savings purely from an I/O

perspective. Similar to the percentage of TCO savings, we

show the TCIO savings by the percentage of TCIO savings

over the TCIO if all jobs are put on HDD.

Data Collection &Model Training.We collect the pro-

duction traces from AnonCorp that consist of the historical

execution log of the data processing framework and the

I/O traces from the distributed storage system. These traces

contain jobs’ metadata and post-execution measurements,

such as job lifetime and TCIO. Section 4.2 explains the fea-

tures we use. Our training and test dataset each contains

one week’s data, which are collected from a contiguous two-

week time span. The training data are constructed by joining

two sources of data. The first is the job execution record,

which includes detailed execution metadata about each job.

The second source is the metrics data from the underlying

file system, which includes lifetime, size of each job; total

amount and mean of read and write I/O ops; and total bytes

read and written. We use a 15-class gradient-boosted trees

model with 300 trees at maximum and a max depth as 6 for

all of our models. We train a separate model for each cluster.

End-to-end System Integration. We develop a proto-

type and deploy it in a production data processing framework

and distributed storage system at AnonCorp to understand

the practicality of our algorithm. In the prototype, we first

follow Section 4.1 to train the per-workload model offline.

During execution time, the computation framework collects

required features and loads the model to perform inference,

to generate a categorization result before opening files for

writing. The categorization results are passed to the storage

cache server, which makes real-time decisions for placement

on HDD or SSD. Metrics are collected during the process to

evaluate TCO and TCIO. We collect the following metrics

through the storage system’s built-in logging mechanism:

life time of each temporary and output file; the size of each

temporary and output file; total amount of read and write

I/O ops; average size of read and write I/O ops; and total

bytes read and written.

Large-Scale Simulation Setup. We conduct extensive

simulation using real production traces at the scale of a

cluster. The simulations allow us to perform detailed study

of performance and trade-offs at a large scale. Our simulation

executes job placement on either SSD or HDD. If a job is

placed on SSD but only partially fits, the remaining portion

of the job spills over to HDD after filling the available SSD

capacity. For experiments varying SSD capacities, we initially

set the SSD constraint to infinity to determine the cluster’s

maximum space usage. We then simulate different scenarios

by varying the SSD space quota.

Methods Compared. We compare 7 methods: FirstFit

(simple heuristic), Heuristic (advanced heuristic, a modi-

fied [38]), ML Baseline (following [42]), adaptive hash (our

method without ML models), adaptive ranking (our method),

oracle TCIO (best bound when optimizing TCIO), and oracle

TCO (best bound when optimizing TCO).

5.2 Integration in Real Systems [RQ1]
A range of pipelines are selected to generate a variety of

I/O workloads in this prototype. These pipelines are com-

pute programs that process large datasets, which involve

GroupBy operations using a wide range of keys through

multiple shuffle jobs. One category of pipelines is more cost-

effective when using HDD, while the other category is more

cost-effective to run on SSD. These pipelines are executed

continuously in a production cloud cluster, akin to real pro-

duction pipelines. We set up a dedicated SSD cache so that

more precise and disturbance-free results can be measured.

A total of 320 worker servers are used to execute the work-

loads, which includes 16 pipelines and 1024 shuffle jobs in

total. The pipelines’ combined peak storage usage is 3.6 TiB.

We pick one cluster and implemented two methods in

AnonCorp’s storage system: FirstFit and Adaptive Ranking

(ours). We vary the SSD quota to be 1.0% and 20% of the peak

theoretical SSD usage limit (Figure 5). For the 1.0% case, our

algorithm shows 1.14% TCO savings (4.38× over FirstFit).

Our method gives 2.48% TCO savings (1.77× over FirstFit) in

the 20% of the peak workload space usage. The TCIO savings

indicate a similar pattern: Adaptive Ranking is 3.90× and

1.69× over FirstFit in the two SSD quota cases respectively.

The end-to-end prototype demonstrates the viability of

our design. The measured savings of Adaptive Ranking and

improvements over the baseline are in line with the perfor-

mance in the large-scale simulation studies in Section 5.3

and thus validate our simulation methodology.

5.3 Overall Savings [RQ2, RQ3]
We pick 10 large TCO clusters to evaluate the overall savings.

A typical workload space usage pattern is shown in Figure 6:

We evaluate the peak SSD space usage by putting all the jobs

on SSD, assuming unlimited SSD quota (dotted line). The

solid lines (blue, orange, green, red) are for SSD space usage

when we set the SSD quota to 100.0%, 50.0%, 10.0%, and 1.0%

8

1% 20%
 Portion of SSD Peak Space Usage

0

2

4
Sa

vi
ng

s
Pe

rc
en

t
(%

)

TCIO Savings

1% 20%0

1

2
TCO Savings

Adaptive
Ranking
FirstFit

Figure 5. Prototype results.

Figure 6. Space usage pattern.

0

2

4

TC
O

Sa
vi

ng
s

 P
er

ce
nt

 (%
)

0 1 2 3 4 5 6 7 8 9
Cluster ID

0

5

10

TC
IO

 S
av

in
gs

 P
er

ce
nt

 (%
)

Adaptive Ranking
Adaptive Hash

ML Baseline
FirstFit

Heuristic

Figure 7. TCO savings (top) and TCIO savings (bottom) from

different clusters with fixed SSD quota.

Figure 8. TCO savings. Figure 9. Cluster generalization.

(a) Running time (b) Accuracy

(c) Importance of different feature groups

Figure 10. Model analysis.

of the peak space usage. This is a typical workload in cloud

centers where many jobs run and the space usage is stable.

To show performance across different clusters, we fix the

SSD quota at 1.0% of the peak SSD space usage and show sav-

ings per cluster (Figure 7). Our method (Adaptive Ranking)

can save over 2.48× at maximum compared with baselines

in terms of TCO savings. The TCIO savings follow a similar

pattern. Traditionally, the TCIO savings increase as allowed

SSD quota increases because SSD cost is not considered. In

comparison, the TCO savings initially increase as SSD quota

goes up but drop when SSD quota is very large due to high

maintenance costs of SSD. We consider our approach as an

effective solution especially when SSD space is limited.

We also evaluate the TCO savings when SSD quota varies

because in practice, we want an approach that can adapt to

different external factors (such as different SSD quota). Our

method consistently saves more TCO than baselines, espe-

cially in limited SSD quota cases (Figure 8). The gap between

our method (adaptive ranking) and adaptive hash (non-ML)

clearly indicates the necessity of our category model. The

gap between oracle (best possible in theory) and our method

also indicates the improvement room for future works.

5.4 Generalizability [RQ4]
Another topic we explore is whether our method can gener-

alize to new clusters, users, and pipelines. In practice, good

Figure 11. Generalization on new users (upper) and new

pipelines (lower). Each figure is for one cluster.

generalizability is necessary as infrastructure, user behaviors,

workloads, etc. change over time.

First we evaluate the generalizability across clusters in

Figure 9. We train our category model on𝐶0,𝐶1,𝐶2,𝐶3, and

evaluate their performance on 𝐶0, where 𝐶3 is a special

cluster that only runs particular pipelines that are rare in

other clusters. We find that our method can adapt to unseen

clusters when the clusters run general pipelines.

Second, we evaluate our solution performance on new in-

coming users’ jobs or jobs from unseen pipelines.We pick the

second-largest TCO consuming user and pipeline, which are

in different clusters. In evaluation, we compare two training

methods: 1). We train the category model with the historical

workloads including the user or the pipeline. 2). We train

the category model with the historical workloads excluding

9

the user or the pipeline. We evaluate the TCO savings curve

under five clusters and show that our method can achieve

similar TCO savings on new users or pipelines as in the case

where the users or pipelines are in the training set. We show

the results in Figure 11 where the blue line (user or pipeline

included in the training) and the orange line (user or pipeline

excluded in the training) achieve similar savings online.

5.5 Model Analysis [RQ5]
Another practical requirement for ML models is their run-

ning latency and explainability. We show the accumulated

inference time of 50 jobs in Figure 10a, where running the

model takes about 4 ms per job, fast enough for making on-

line placement decisions. Note that our ML model invocation

is currently a prototype implemented in Python, without spe-

cific performance optimizations. Potential improvements in

running efficiency could be achieved through further opti-

mization, such as wrapping the ML models in C/C++, which

is known for enhanced computational efficiency.

We show our model accuracy in Figure 10b. We compare

the relationship between model accuracy and the training

size across all the clusters. The average top-1 accuracy is 0.36

for 15-category classification model and we do not spot a

strong correlation between training size and accuracy, which

indicates that large data size may not be a requirement for

applying ML in systems.

Next, we analyze how the model makes decisions by as-

sessing feature importance across feature groups, as depicted

in Figure 10c. Feature group significance is represented by

color intensity, with lighter shades indicating higher impor-

tance. As discussed in Section 4.2, the features are divided

into four groups: A (Historical system metrics), B (Execution

metadata), C (Allocated resources), and T (Job timestamp).

To quantify the importance of features in predicting each

category, we perform a binary prediction analysis (whether

a job belongs to the category or not) for each category. For

each feature, we measure the decrease in the area under the

ROC curve (AUC) when that specific feature is excluded from

binary prediction tasks. This approach helps us understand

how the absence of a feature affects the model’s predictive

performance. These importance scores are normalized for

comparability within each category.We calculate and present

average importance scores for each feature group. In our

model, the category 0 is for negative TCO savings and the

remaining categories are associated with the ranking of I/O

density. Our findings reveal that historical system metrics

significantly influence the prediction of I/O density rankings.

In contrast, the start time and execution metadata are more

critical for predicting whether a job’s TCO saving is negative.

We also find that our end-to-end savings may not benefit

from more accurate models in Figure 12. Here, we evaluate

the performance of the TCO savings assuming we have per-

fect models. The “Predicted category” is our approach. The

“True category” is a method where we replace the category

Figure 12. Comparison with

using true category.

Figure 13. Adaptive algo-

rithm parameters sensitivity.

Method TCO Savings Percent Model Top-1 Accuracy

Ours (𝑁 = 2) 9.25% 73.4%

Ours (𝑁 = 5) 11.1% 55.6%

Ours (𝑁 = 15) 12.7% 32.3%

Ours (𝑁 = 25) 12.6% 24.2%

Ours (𝑁 = 35) 10.8% 21.2%

Best Baseline 10.7% /

Table 4. The TCO savings under different category numbers.

model’s prediction results with the ground truth category.

The latter is the case where we have 100% accuracy in our

approach. We think this interesting observation can help us

rethink the solutions of ML for systems. The challenges of

ML for systems are not only about the accuracy and learn-

ing algorithm but also about how to formulate the learning

problem and how to use the ML model.

5.6 Sensitivity Analysis [RQ6]
Adaptive Algorithm Parameters. We include all combi-

nations of hyperparameters where 𝑇SpilloverTCIO ∈ {[0.005,
0.03], [0.01, 0.15], [0.05, 0.25]}, look backwindow time length

(seconds) 𝑡𝑤 ∈ {600, 900, 1800}, and admission decision ef-

fective time 𝑡𝑙 ∈ {600, 900, 1800}. We evaluate the sensitivity

of the TCO savings for the same set of clusters in Figure 8.

For each parameter combination, we apply the same param-

eter settings to all the clusters in the group. In Figure 13,

the blue area in the figure presents the upper bound and

lower bound of TCO savings under different SSD capacities

across different hyperparameter combinations. Our solution

is not sensitive in terms of hyperparameter selection in the

adaptive algorithm.

Sensitivity on Category Numbers. Our evaluation uti-

lizes the 0.1 SSD portion setting with all the algorithm pa-

rameters maintain consistent. It is critical to select an appro-

priately large number of categories to enable the model to

effectively distinguish the cost across jobs without increas-

ing the model’s capacity for fine-grained category prediction.

We present the impact of category numbers 𝑁 on end-to-end

TCO savings in Table 4. A model with smaller category num-

ber achieves higher accuracy but fails to optimize the end-to-

end TCO savings due to its limited granularity. Conversely,

increasing the number of categories enhances granularity

but at the cost of accuracy, diminishing the TCO savings.

10

Figure 14. Category change of one cluster workload. From

top to bottom, the SSD quota covers 0.01%, 1.0%, 10%, and 50%

of the peak SSD space usage under no SSD quota limit. The

green line is the observed SpilloverTCIO and the orange

line represents the category admission threshold. The red

area at the bottom of each figure is 𝑇SpilloverTCIO.

5.7 Adaptive Category Selection Dynamics [RQ7]
To demonstrate the dynamics of our adaptive algorithm,

we present the pattern of category threshold change and

spill over percentage in Figure 14. We track the threshold

change for 1 week online. Our adaptive category selection

algorithm can adjust the category admission threshold to

a higher range when SSD quota is limited and allow more

category admissions when SSD space is plentiful.

6 Related Works
Machine Learning in Storage Systems. Prior works have
shown the viability of machine learning for task property

prediction in storage systems. [12] leverages a small neu-

ral network to infer SSD performance with fine granularity

and help parallel storage applications. The method learns a

binary latency model and pre-calculate an inflection point

for each model during a labelling stage. The key benefit

is model simplicity and fine granularity of prediction, en-

abling more complicated applications online within latency

requirements. [42] tackles a problem related to our setting

in data placement with methods that leverage application-

level information and distributed traces in a way inspired

by ideas from natural language processing. While the paper

focuses on a specific learning problem of mapping textual

metadata to storage-related properties, our work focuses on

the practical designs and deployment of such models.

Other applications of machine learning in storage systems

include training one monolithic model for the entire storage

system (not deployable in warehouse-scale setting due to

adaptability): applying imitation learning for cache replace-

ment to approximate an optimal oracle policy [22], guiding

the placement algorithmmodel through reinforcement learn-

ing [15, 32]; predicting properties in other aspects of data

placement: improving a storage system through optimizing

readahead and NFS read-size values with machine learning

models [2], utilizing ML to improve on existing cache re-

placement strategies (LRU, LFU, etc.) [33], and predicting

future task failures through ML [5].

Multiple machine learning techniques have also been pro-

posed in broader system problems [16, 23], ranging from

resource allocation [24], memory access prediction [13], of-

fline storage configuration recommendation [19], database

query optimization [20], to networking applications [1, 6].

Although the nature of these applications is different from

data placement in storage systems, they all show evidence

that machine learning can be used in systems and benefits

from domain-specific formulations.

Data Placement in Practice. Though machine learning

for systems has been widely explored in different application

domains, the state of the art practical solutions for caching

or tiering in storage systems are still mostly heuristic.

Hadoop offers three caching schedulers: FIFO [27], Capac-

ity [29], Fair [39]. Spark supports FIFO, Fair. For each user,

Azure tracks the last-accessed files and make the placement

based of the self-tracked access history [7]. [38] presents

a novel adaptive cache admission solutions for Google, of

which we implement a modified version in our comparison.

Very recent works have also started rethinking the best

practical solution within the heuristic-based domain. [36, 37]

consider a modified FIFO for cache eviction, which achieves

good scalability with high throughput on production traces

from Twitter and MSR. [9] revisits the effectivenss of LRU

versus FIFO and finds that FIFO exhibits better overall cost

than LRU on production traces, including IBM COS traces.

[41] proposes new heuristics for storage, specifically tailored

for machine learning workloads at Meta.

Another noteworthy work presents a solver-based solu-

tion for task scheduling in the setting where each task con-

tains a list of preferred locations identified prior to schedul-

ing. Their approach formulates the problem as a minimum

cost maximum matching problem [14]. Although closely re-

lated to our work, as discussed in the Section 2 and Section 3,

the method is not directly feasible in our context. The pri-

mary challenge in adopting such a solver-based approach in

our setting lies in the lack of jobs’ cost at scheduling time.

7 Conclusion
We have presented a practical approach to data placement

in data centers. In the process, we identify and solve prac-

tical challenges with a cross-layer data placement solution

combining application-level ML models with storage-level

heuristics. Our approach shows significant TCO savings over

the state of the art techniques.We believe that our cross-layer

approach presents a methodology for practical ML usage in

systems beyond the data placement problem.

11

References
[1] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic

meets modern: A pragmatic learning-based congestion control for the

internet. In Proceedings of the Annual conference of the ACM Special

Interest Group on Data Communication on the applications, technologies,

architectures, and protocols for computer communication. 632–647.

[2] Ibrahim Umit Akgun, Ali Selman Aydin, Andrew Burford, Michael

McNeill, Michael Arkhangelskiy, and Erez Zadok. 2023. Improving

Storage SystemsUsingMachine Learning. ACMTransactions on Storage

19, 1 (2023), 1–30.

[3] Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Wal-

iji, François Labelle, Nate Coehlo, Xudong Shi, and C Eric Schrock.

2013. Janus: Optimal flash provisioning for cloud storage workloads. In

2013 USENIX Annual Technical Conference (USENIX ATC 13). 91–102.

[4] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild

Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng

Wu, Huseyin Simitci, et al. 2011. Windows azure storage: a highly

available cloud storage service with strong consistency. In Proceedings

of the Twenty-Third ACM Symposium on Operating Systems Principles.

143–157.

[5] Chandranil Chakraborttii and Heiner Litz. 2020. Improving the accu-

racy, adaptability, and interpretability of SSD failure prediction models.

In Proceedings of the 11th ACM Symposium on Cloud Computing. 120–

133.

[6] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,

Brighten Godfrey, and Michael Schapira. 2018. {PCC} Vivace:{Online-
Learning} Congestion Control. In 15th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 18). 343–356.

[7] Ken Downie, Nataraj Sindam, Tamra Myers, Jeff Patterson, Will

Gries, and Fabian Uhse. 2023. Cloud tiering overview: Cloud tier-

ing heatmap. https://learn.microsoft.com/en-us/azure/storage/file-
sync/file-sync-cloud-tiering-overview#cloud-tiering-heatmap.

[8] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan

Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten

Schwan. 2016. Data tiering in heterogeneous memory systems. In

Proceedings of the Eleventh European Conference on Computer Systems.

1–16.

[9] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat.

2020. It’s Time to Revisit {LRU} vs.{FIFO}. In 12th USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage 20).

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The

Google file system. In Proceedings of the nineteenth ACM symposium

on Operating systems principles. 29–43.

[11] Mathieu Guillame-Bert, Sebastian Bruch, Richard Stotz, and Jan Pfeifer.

2023. Yggdrasil Decision Forests: A Fast and Extensible Decision

Forests Library. In Proceedings of the 29th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA,

August 6-10, 2023. 4068–4077. https://doi.org/10.1145/3580305.3599933
[12] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,

Henry Hoffmann, and Haryadi S Gunawi. 2020. {LinnOS}: Predictabil-
ity on Unpredictable Flash Storage with a Light Neural Network. In

14th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 20). 173–190.

[13] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz,

Jichuan Chang, Christos Kozyrakis, and Parthasarathy Ranganathan.

2018. Learning memory access patterns. In International Conference

on Machine Learning. PMLR, 1919–1928.

[14] Herodotos Herodotou and Elena Kakoulli. 2021. Trident: task schedul-

ing over tiered storage systems in big data platforms. Proceedings of

the VLDB Endowment 14, 9 (2021), 1570–1582.

[15] Ravi Kaler and Durga Toshniwal. 2023. Deep Reinforcement Learning

based Data Placement optimization in Data Center Networks. In 2023

IEEE International Conference on Big Data (BigData). IEEE, 2293–2302.

[16] Marios Evangelos Kanakis, Ramin Khalili, and Lin Wang. 2022. Ma-

chine Learning for Computer Systems and Networking: A Survey.

Comput. Surveys 55, 4 (2022), 1–36.

[17] Minguk Kang and Jaesik Park. 2020. Contragan: Contrastive learning

for conditional image generation. Advances in Neural Information

Processing Systems 33 (2020), 21357–21369.

[18] Hyojun Kim, Sangeetha Seshadri, Clement L Dickey, and Lawrence

Chiu. 2014. Evaluating phase change memory for enterprise storage

systems: A study of caching and tiering approaches. ACM Transactions

on Storage (TOS) 10, 4 (2014), 1–21.

[19] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta:

Heterogeneous cloud storage configuration for data analytics. In 2018

USENIX Annual Technical Conference (USENIX ATC 18). 759–773.

[20] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding,

Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, and

Vikram Nathan. 2021. Sagedb: A learned database system. (2021).

[21] Honglak Lee, Peter Pham, Yan Largman, and Andrew Ng. 2009. Unsu-

pervised feature learning for audio classification using convolutional

deep belief networks. Advances in neural information processing sys-

tems 22 (2009).

[22] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan,

and Junwhan Ahn. 2020. An imitation learning approach for cache

replacement. In International Conference on Machine Learning. PMLR,

6237–6247.

[23] Martin Maas. 2020. A taxonomy of ML for systems problems. IEEE

Micro 40, 5 (2020), 8–16.

[24] Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann.

2018. CALOREE: Learning control for predictable latency and low

energy. ACM SIGPLAN Notices 53, 2 (2018), 184–198.

[25] Rani Molla. 2018. Google, Amazon and Microsoft cloud busi-

nesses helped more than double spending on data centers last

year. https://www.vox.com/2018/3/15/17124300/google-amazon-
microsoft-cloud-200-\percent-jump-data-center-acquisitions.

[26] Aizhamal Nurmamat kyzy, Aljoscha Krettek, Ahmet Altay, Ankur

Goenka, Anton Kedin, Bruno Volpato, Charles Chen, Chad Dombrova,

Chamikara Jayalath, DannyMcCormick, David Cavazos, Davor Bonaci,

Dan Halperin, Emily Ye, Frances Perry, Harshit Dwivedi, Heejong Lee,

Henry Suryawirawan, Ismaël Mejía, James Malone, Jesse Anderson,

John Casey, Julien Phalip, Jack R. McCluskey, Kiley Sok, Kenneth

Knowles, Leonid Kuligin, Mark Liu, Mikhail Gryzykhin, Robert Brad-

shaw, Tyler Akidau, Thomas Groh, Thomas Weise, Eugene Kirpichov,

Jean-Baptiste Onofré, Anand Iyer, Alexey Romanenko, Pablo Estrada,

Rafael Fernández, Matthias Baetens, Reza Rokni, Tanay Tummala-

palli, Udi Meiri, Boyuan Zhang, Rui Wang, Maximilian Michels, Ning

Kang, Pedro Galvan, Rion Williams, Saavan Nanavati, Brian Hulette,

Robert Burke, Valentyn Tymofieiev, Andrew Pilloud, Kyle Weaver,

Daniel Oliviera, Robin Qiu, Mark Zeng, Yifan Zou, Artur Khanin, Ilya

Kozyrev, Alex Kosolapov, Brittany Hermann, Svetak Sundhar, Israel

Herraiz, Yichi Zhang, Danielle Syse, Ritesh Ghorse, Yi Hu, Pablo Ro-

driguez Defino, Namita Sharma, and Talat Uyarer. 2012. Apache Beam:

An advanced unified programming model. https://beam.apache.org.
[27] Seyed Reza Pakize. 2014. A comprehensive view of HadoopMapReduce

scheduling algorithms. International Journal of Computer Networks &

Communications Security 2, 9 (2014), 308–317.

[28] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2022. Chal-

lenges in deployingmachine learning: a survey of case studies. Comput.

Surveys 55, 6 (2022), 1–29.

[29] Aparna Raj, Kamaldeep Kaur, Uddipan Dutta, V Venkat Sandeep, and

Shrisha Rao. 2012. Enhancement of hadoop clusters with virtualization

using the capacity scheduler. In 2012 Third International Conference on

Services in Emerging Markets. IEEE, 50–57.

[30] Mohit Saxena, Michael M Swift, and Yiying Zhang. 2012. Flashtier: a

lightweight, consistent and durable storage cache. In Proceedings of

the 7th ACM european conference on Computer Systems. 267–280.

12

https://learn.microsoft.com/en-us/azure/storage/file-sync/file-sync-cloud-tiering-overview#cloud-tiering-heatmap
https://learn.microsoft.com/en-us/azure/storage/file-sync/file-sync-cloud-tiering-overview#cloud-tiering-heatmap
https://doi.org/10.1145/3580305.3599933
https://www.vox.com/2018/3/15/17124300/google-amazon-microsoft-cloud-200-\ percent-jump-data-center-acquisitions
https://www.vox.com/2018/3/15/17124300/google-amazon-microsoft-cloud-200-\ percent-jump-data-center-acquisitions
https://beam.apache.org

[31] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. 2010. The Hadoop Distributed File System. In 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST). 1–10.

https://doi.org/10.1109/MSST.2010.5496972
[32] Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran

Hajinazar, David Novo, Juan Gómez-Luna, Sander Stuijk, Henk Cor-

poraal, and Onur Mutlu. 2022. Sibyl: Adaptive and extensible data

placement in hybrid storage systems using online reinforcement learn-

ing. In Proceedings of the 49th Annual International Symposium on

Computer Architecture. 320–336.

[33] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons,

Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. 2018.

Driving cache replacement with {ML-based} {LeCaR}. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 18).

[34] Reynold Xin. 2014. Apache Spark the Fastest Open Source Engine

for Sorting a Petabyte. https://www.databricks.com/blog/2014/10/10/
spark-petabyte-sort.html. Accessed: 2024-01-22.

[35] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan

Sundararaman, and Robert Wood. 2013. HEC: improving endurance

of high performance flash-based cache devices. In Proceedings of the

6th International Systems and Storage Conference. 1–11.

[36] Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue, and KV Rashmi.

2023. FIFO can be Better than LRU: the Power of Lazy Promotion and

Quick Demotion. In Proceedings of the 19th Workshop on Hot Topics in

Operating Systems. 70–79.

[37] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi

Vinayak. 2023. FIFO queues are all you need for cache eviction. In

Proceedings of the 29th Symposium on Operating Systems Principles.

130–149.

[38] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer

Wolfmeister. 2022. {CacheSack}: Admission Optimization for Google

Datacenter Flash Caches. In 2022 USENIX Annual Technical Conference

(USENIX ATC 22). 1021–1036.

[39] Matei Zaharia, Dhruba Borthakur, J Sen Sarma, Khaled Elmeleegy,

Scott Shenker, and Ion Stoica. 2009. Job scheduling for multi-user

mapreduce clusters. Technical Report. Technical Report UCB/EECS-

2009-55, EECS Department, University of California

[40] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and

Ion Stoica. 2012. Resilient distributed datasets: A {Fault-Tolerant}
abstraction for {In-Memory} cluster computing. In 9th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 12).

15–28.

[41] Mark Zhao, Satadru Pan, Niket Agarwal, Zhaoduo Wen, David Xu,

Anand Natarajan, Pavan Kumar, Ritesh Tijoriwala, Karan Asher, Hao

Wu, et al. 2023. {Tectonic-Shift}: A Composite Storage Fabric for

{Large-Scale} {ML} Training. In 2023 USENIX Annual Technical Con-

ference (USENIX ATC 23). 433–449.

[42] Giulio Zhou and Martin Maas. 2021. Learning on distributed traces

for data center storage systems. Proceedings of Machine Learning and

Systems 3 (2021), 350–364.

13

https://doi.org/10.1109/MSST.2010.5496972
https://www.databricks.com/blog/2014/10/10/spark-petabyte-sort.html
https://www.databricks.com/blog/2014/10/10/spark-petabyte-sort.html

	Abstract
	1 Introduction
	2 Background
	2.1 Storage for Data Processing Frameworks
	2.2 SSD/HDD Tiering and its Trade-Offs
	2.3 Production Requirements and Limitations

	3 Problem Formulation and Baselines
	4 Hybrid Learning Approach
	4.1 Features
	4.2 Model Design
	4.3 Adaptive Category Selection Algorithm

	5 Evaluation
	5.1 Experimental Setup
	5.2 Integration in Real Systems [RQ1]
	5.3 Overall Savings [RQ2, RQ3]
	5.4 Generalizability [RQ4]
	5.5 Model Analysis [RQ5]
	5.6 Sensitivity Analysis [RQ6]
	5.7 Adaptive Category Selection Dynamics [RQ7]

	6 Related Works
	7 Conclusion
	References

