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Abstract—Recently, Edge Computing has emerged as a new
computing paradigm dedicated for mobile applications for perfor-
mance enhancement and energy efficiency purposes. Specifically,
it benefits today’s interactive applications on power-constrained
devices by offloading compute-intensive tasks to the edge nodes
which is in close proximity. Meanwhile, Field Programmable Gate
Array (FPGA) is well known for its excellence in accelerating
compute-intensive tasks such as deep learning algorithms in
a high performance and energy efficiency manner due to its
hardware-customizable nature. In this paper, we make the
first attempt to leverage and combine the advantages of these
two, and proposed a new network-assisted computing model,
namely FPGA-based edge computing. As a case study, we choose
three computer vision (CV)-based interactive mobile applications,
and implement their backend computation parts on FPGA. By
deploying such application-customized accelerator modules for
computation offloading at the network edge, we experimentally
demonstrate that this approach can effectively reduce response
time for the applications and energy consumption for the entire
system in comparison with traditional CPU-based edge/cloud
offloading approach.

I. INTRODUCTION

Edge Computing is an emerging network-assisted comput-
ing model for optimizing cloud computing by placing com-
puting (and storage) resources at the network edge (e.g. WiFi
access point, cellular base station) which is in close proximity
to mobile or sensor devices. Over the years multiple concepts
including “cloudlets” [1], “fog computing” [2], “mobile edge
computing” [3] have been proposed under different context but
share the common core idea of reducing the dependency on the
remote cloud. This computing model has the native advantage
of reducing the response time – by reducing the round trip
time (RTT) from a multi-hop long end-to-end session across
the Internet to a 1-hop wireless segment, it makes the unpre-
dictable network condition not the performance bottleneck any
more. This property is very important for today’s interactive
applications (e.g. augmented reality, intelligent personal assis-
tant) which not only rely on compute-intensive algorithms such
as deep learning but also request (near) real-time performance.
Recent work has experimentally quantified the benefits of edge
computing. For instance, by placing VM-based cloudlets [1] at
the network edge to accelerate the computational engine, one
can achieve lower response time by up to 4.9x compared with
cloud offloading, enhance the user experience and save energy
consumption for mobile applications that take visual/speech
signals as input [4], [5].

On the other side, Field Programmable Gate Array (FPGA)
has been proven to be an appealing solution to accelerate
compute-intensive workloads. Because of the customizable
hardware architecture, all its on-chip available logic blocks
can be (re)configured with dedicated pipeline and parallelism
design for performance (i.e. latency and throughput) en-
hancement and optimization. As an generic example for data
modeling and representation, FPGA-based accelerators for
convolutional neural networks (CNN) can achieve 2.0x∼2.5x
improvement on AlexNet for image classification in terms of
processing time over CPUs [6], [7], [8]. As another example
for a specific application, in Sirius, an intelligent personal
assistant [9], FPGA is used for accelerating the visual/speech
signal based workloads running in data centers and reducing
the query latency by 16x. Moreover, FPGA has already been
employed for computation acceleration in cloud computing as
well. For instance, Microsoft has deployed FPGAs in its data
centers to improve the throughput of the ranking portion of
the Bing web search engine by nearly 2x [10].

Motivated by the advantages of edge offloading and FPGA-
based acceleration, we seek to combine the two technologies to
further boost the responsiveness performance in edge comput-
ing, i.e., deploy FPGA-based accelerators at the network edge
to accelerate the mobile applications from the computation
offloading perspective. As a case study, we choose three
mobile computer vision (CV)-based interactive applications.
By offloading the computation from CPU in mobile/cloud to
FPGA at the network edge, the FPGA-based edge computing
model effectively reduces response time for the applications
and energy consumption for the entire system.

Contributions.
• To our best knowledge, this work makes the first attempt

to propose the FPGA-based edge computing model. By
combining the native advantage of edge offloading and
FPGA-based computational acceleration, this model can
effectively reduce the response time and energy consump-
tion, and thus benefit mobile interactive applications.

• We design and implement a proof-of-concept FPGA-
based edge computing system. Our experimental results
demonstrate that our solution can reduce the response
time and execution time by up to 3x and 15x respectively
over CPU-based edge/cloud offloading in a case study
using three CV-based interactive applications.



• We exploit the benefits of energy efficiency in both end
device and edge nodes. Our results showcase that our sys-
tem can achieve up to 29.5% and 16.2% energy efficiency
on mobile device and edge nodes respectively.

II. SYSTEM DESCRIPTION

In this section, we introduce the design and setup of our
FPGA-based edge computing system. The overall system
architecture is shown is Fig. 1. It consists of a mobile device,
an edge node (representing the edge network) and a cloud,
which specifications are detailed in Tab. I.

Offload
Manager

ARM 
Processor

Programmable Logic
(Accelerator for Apps)

Computation 
Offloading 

Module
On-chip Bus

data results

Edge 
Network

Edge Cloud 
Service Proxy

Remote Cloud

App-related
Data Resource

Computing Unit

Mobile Devices

(Xilinx ZC706 Board)

Application
Solver Module

Figure 1. System Architecture for FPGA-based Edge Computing.

Mobile Device (Huawei Mate 9) is connected to the edge node
via 802.11n WiFi. It primarily runs the front-end part of the
application to interface with the Computation Offloading mod-
ule for sending requests (e.g. raw sensor data) and receiving
application-specific responses via a UI.

Edge Network is composed of a wireless router (Xiaomi
MiWiFi Mini [11]) and an ARM-FPGA board (Xilinx ZC706
[12]) connected via Ethernet. It has two main components,
namely Offload Manager module and Computation Offloading
module. The Offload Manager module is implemented on the
router and used to interface with the frond-end application and
route the data to the offloading target (the local Computation
Offloading module or the remote cloud). In this work, the
local Computation Offloading module is implemented using
FPGA – the ZC706 board has a 2-core ARM Cortex-A9
processor (runs Xilinx Linux 4.4 [13]) and a Zynq-7000
XC7Z045 FPGA connected via a high-speed on-chip bus. The
ARM processor runs simple programs to forward data between
Offload Manager module and the FPGA-based Computation
Offloading module. The Computation Offloading module is
implemented using Xilinx SDSoC 2016.2 Tool. Specifically,

Table I
HARDWARE SPECIFICATION OF THE SYSTEM PARTICIPANTS.

Mobile Device Edge Network Cloud
(Huawei Mate 9) (Xilinx ZC706 Board) (in-lab Server)

ARM Cortex A73* ARM Cortex-A9 Intel Xeon E5-2650
2.4 GHz, 4 cores 1.2 GHz, 2 cores 2.3 GHz, 20 cores**

6 GB RAM 1 GB RAM 64 GB RAM
128 GB Flash 8 GB Flash 2 TB HDD

802.11a/b/g/n/ac WiFi 1 Gbps Ethernet 1 Gbps Ethernet

* The device also has 4 ARM Cortex A53 cores of 1.8 GHz.
** It has 20 physical cores and 40 logic CPUs in total.

we analyze the C/C++ implementation of the applications to
localize the bottleneck parts, and optimize them by inserting
pragmas to configure SDSoC to generate pipelines, unrolled
loops and other optimization techniques. As SDSoC only sup-
ports a subset of the C/C++ functions, we also need to modify
the code to fit this constraint. Then SDSoC invokes High-
Level Synthesis (HLS) toolchains to synthesize hardware code
(e.g. Verilog) from our C/C++ implementation and generates
the data motion network between the ARM processor and the
FPGA. The core algorithms of the applications are accelerated
on the FPGA part.

Cloud is used to provide the baseline performance of tradi-
tional CPU-based cloud offloading. We use our in-lab server
to emulate the remote cloud in our experiments. It has an
Intel Xeon processor with 40 logic CPUs and the memory
size is 64 GB, which is more powerful than most virtual
machines provided in commercial cloud computing service.
The Edge Cloud Service Proxy interfaces with the Offload
Manager in the edge network for offload the computation task
to the Computing Unit, which contains both the computation
engine and the app-related data (i.e. CNN model parameters).
To further consider the dynamic network condition (CDN
location, load balancing, etc.), we use the Linux netem tool
on the cloud to add delay between mobile devices and cloud.

III. EXPERIMENTAL APPROACH

In this section, we first introduce the three interactive
applications we choose for our case study. Then, we describe
our experimental setup for FPGA-based edge offloading, CPU-
based cloud offloading and CPU-based edge offloading for
performance evaluation and comparison.

A. Applications

Recent years have witnessed the proliferation of mobile
interactive applications (e.g. Apple’s Siri, AiPoly Vision [14],
Snapseed [15], MAR AR [16]) powered by the advanced
R&D progression in low-power hardware design. For instance,
Google glass [17] successfully embeds CPU, image sensor,
wireless connectivity, display, battery and anything else into
a single glasses temple – this system-level integration effort
reaches a milestone that brings mobile computer vision (e.g.
object detection/recognition)-based application into people’s
daily life. For this purpose, we primarily choose the following
three applications in this domain for our case study. Each
application is partitioned into a front-end mobile application
for taking input data and a back-end server program that
performs the computation. It processes one image at a time.

Digit [18] is an application that recognizes the handwritten
digit number in a given image. The program on the back-
end server is based on a convolution neural network (CNN)



Table II
ARCHITECTURE OF THE CNN FOR Digit

Layer Input Fmaps Output Fmaps Output Dim
Conv1 1 6 28
Pool1 6 6 14
Conv2 6 16 10
Pool2 16 16 5
Conv3 16 120 1

FC 120 10 1

model1. It takes a grey-scale image which is resized to 28
× 28 as input and finds the most probable digit class. The
CNN model we employ here is similar to the LeNet-5 [18]
architecture, as shown in Tab. II. The parameters have been
pre-trained on the MNIST dataset [18]. We implement the
server program using C++ and OpenCV [19].

Object [8] is an application that recognizes different objects
in a given image. It takes a 3-channel RGB image as input
and returns the class name of object in the input image. The
recognition algorithm is based on a binarized neural network
(BNN) model [20]. A BNN is essentially an extreme CNN
whose weights and values of its feature maps are binarized
to -1 or +1, which reduces both the storage size and time
for inference. Before calculating, the input image is resized
to 32 × 32. The architecture of th neural network model is
similar to AlexNet [21], as shown in Tab. III. The parameters
have been pre-trained on the CIFAR-10 dataset [22]. Besides
the BNN version (we call it Object-BNN in the rest of this
paper), we also implement a CNN version on back-end server
which adopts the same parameters and model architecture (we
call it Object-CNN in the rest of this paper). The recognition
error rate of the CNN version is about 1% lower than BNN.
As the binarized operations in BNN can be regarded as
an accelerating method for CNN on hardware, we likewise
compare the performance of the CPU-based CNN with the
FPGA-based BNN.

Face [23] is a face detection application that identifies the
coordinates of the rectangles containing human faces. The
server takes a 320x240 greyscale image as input and returns an
image that marks human faces with rectangles. It implements
the Viola Jones algorithm [24] which is based on Haar-like
features. This algorithm scans the image in different scales
and calculates similarity between the scanning region and the
pre-trained Haar feature templates to determine whether there
is a face in the region. The server program is implemented
using C++ and OpenCV.

These applications are all compute-intensive and are ex-
pected to benefit from the edge offloading method. Digit

1CNN is one type of neural network, a multi-layer machine learning model
and is usually used for image classification. It uses pre-trained parameters and
input data to accomplish the classification tasks. A CNN consists of different
types of layers – Convolutional Layer (Conv) does convolution operations
to extract features from images. Pooling Layer (Pool) performs statistical
functions (e.g. max, min) to refine the features. Full-Connected Layer (FC)
uses the features to classify the image. The input and output of each layer
are called Feature Maps (Fmaps).

applies a relatively simple deep learning model, while Object
adopts a relatively complex deep learning model; Face does
not use a deep learning method but is based on a traditional
computer vision algorithm. To reduce the network traffic,
many applications about computer vision resize the images
on the mobile device before sending them to back-end server.
Thus size of images sent to the back-end server is much
smaller than the initial size, which is about 1 MB or larger.
The average request data size and response data size of Face
are both about 75 KB. The other two applications are similar
on the network load, whose average request size is about 1
KB and the response size is less than 15 bytes.

Table III
ARCHITECTURE OF THE BNN AND CNN FOR Object

Layer Input Fmaps Output Fmaps Output Dim
Conv1 3 128 32
Conv2 128 128 32
Pool 128 128 16

Conv3 128 256 16
Conv4 256 256 16
Pool 256 256 8

Conv5 256 512 8
Conv6 512 512 8
Pool 512 512 4
FC1 8192 1024 1
FC2 1024 1024 1
FC3 1024 10 1

B. Experimental Setup
The purpose of computation offloading is to accelerate the

applications to provide users with better experience. Thus, our
experiments focus on one of the most important metrics to
mobile application users, namely response time (time between
the request is sent and the response is received by the mobile
device). We also measure the execution time (time between
the server starts processing and it finishes computing) to
observe the speedup of FPGA-based offloading over CPU-
based offloading.

1) Edge versus Cloud: First of all, we compare FPGA-
based edge offloading with the CPU-based cloud offloading
method. In the former case, the server program runs on the
FPGA-based edge node and the Offload Manager will route
the application request towards that. In the latter case, the
server program runs in the cloud (i.e. our in-lab server). We
emulate the cloud latencies by using Linux netem tool on the
cloud to add delay of 0, 5, 25, 50, 75 (as default2), 100 and
150 ms between mobile devices and cloud. We evaluate both
of the two offloading methods on the three applications. For
each application, we record the response time and execution
time of 500 interactions when offloading computation to edge
node. In the case of cloud offloading, we also conduct the
same measurement with different cloud latencies. We record
the response times and execution times of 500 requests for
different cloud latencies respectively.

2Li et al. reported in [25] that the average RTT to their optimal Amazon
EC2 instance is 74 ms, which is similar to the typical network condition
reported in [5]



2) FPGA versus CPU: To further investigate the efficacy
of FPGA-based offloading, we compare FPGA-based edge
offloading with the CPU-based edge offloading. We use a
laptop with an Intel Core i7-7700 CPU and 8 GB memory as
our CPU-based edge node, which is more powerful than the
Cloudlet configuration in [5]. We run the same server programs
used in the cloud offloading cases on our CPU-based edge
node. We conduct the same experiments mentioned before for
all the applications.

In addition, we measure the energy consumption of FPGA-
based edge and CPU-based edge as well. For the FPGA-based
edge, we connect a power monitor to the FPGA board to
observe the power usage during the experiments and record
a stable value as the result. For the CPU-based case, we use
the powertop tool to measure the energy consumption when
server programs are running.

IV. EXPERIMENTAL RESULTS

In this section, we first demonstrate the performance of
FPGA-based edge offloading and CPU-based cloud offloading
on the three applications, and then show the comparison
between FPGA-based edge offloading and CPU-based edge
offloading on response time, execution time and energy con-
sumption. Finally, we present and analyze the comparison
between the offloading method and the no-offloading method.

A. Edge versus Cloud

We calculate the average response time and execution time
of 500 interactions for all cases of the three applications and
the results are shown in Fig. 2.

1) Response Time: We observe that for all the three appli-
cations, using the FPGA-based edge as the offloading target
brings shorter response time than the CPU-based cloud in
general. For the Digit application, although it does not show
any advantages with FPGA-based acceleration due to the
simplicity of computation in terms of execution time, its
response time is still 2.9x shorter than the cloud offloading
case because of the shorter RTT, even with a delay of 0 ms,
as shown in Fig. 2(a). As for the typical cloud offloading case
in which delay is 75 ms, the FPGA-based edge shortens the
response time by 5.1x. For the Object application, Fig. 2(b)
and Fig. 2(c) show that with the same network latency, the
response time of the BNN server is very close to that of the
CNN server. This is reasonable because there is no specific
acceleration for the binarized operation on general CPUs.
Hence the BNN only reduces storage size of the models but
can not be expected to run faster than the traditional CNN.
In this application, the FPGA-based edge offloading gains a
speedup of 2.3x compared with the 0-ms cloud offloading
case and 4.3x compared with the 75-ms case. For the Face
application (Fig. 2(d)), response time using the FPGA-based
edge is 1.5x shorter than the 0-ms case and 4.6x shorter than
the 75-ms case.

We also see in Fig. 2 that with the network delay increasing,
the response time of CPU-based cloud offloading increases sig-
nificantly, which may cause bad user experience. By contrast,

the network speed between mobile device and the edge node
is usually stable and fast. Thus the edge offloading method can
also work well even if the network condition in core network
is poor.

Table IV
EXECUTION TIME OF EDGE AND CLOUD (msec)

Digit Face Object-CNN Object-BNN
FPGA-based edge 2.021 41.63 13.99 13.99
CPU-based cloud 2.137 153.97 202.47 207.52

2) Execution Time: From Fig. 2 we can also see that for
each application, the average execution time of CPU-based
cloud remains nearly the same with different network delays.
This is obvious because network communication should not
affect the time for computing. Tab. IV lists the details of
execution time for the applications, in which the execution
time of CPU-based cloud presented is the case with 0-ms
delay. We see that the execution time of Digit on the FPGA-
based edge is almost the same as that on CPU-based cloud.
The main reason is that the neural network architecture in
this application is relatively simple and the CPU is efficient
enough. The FPGA-based edge offloading brings about an ev-
ident speedup of execution time for the other two applications.
The Object application runs 14.5x faster on the FPGA-based
edge than the CPU-based cloud, and the acceleration ratio is
3.2x for the Face application. With a well-designed accelerator
for a relatively complex algorithm, FPGA can improve the
performance of the applications greatly.

B. FPGA versus CPU
To further demonstrate the advantages of using FPGA, we

replace the FPGA-based edge node with a laptop that runs
the same server programs and evaluate the performance of the
applications in the same way we do in FPGA-based edge of-
floading case. Also, we measure the energy consumption of the
FPGA-based edge and the CPU-based edge. The configuration
of the laptop is described in Section III.

1) Response Time: Fig. 3 shows the results of execution
time and response time. We observe that the FPGA-based edge
offloading performs better than the CPU-based edge offloading
in general. The response time and execution time are nearly
the same for Digit application using different kinds of edge
nodes, for the same reason mentioned before that the server
program is relatively simple. Also, the BNN and CNN version
server program for Object have similar performance on the
CPU-based edge as they perform on the CPU-based cloud.
The FPGA-based edge reduces the response time by 1.62x for
the Object application and 1.14x for the Face application.

Table V
EXECUTION TIME OF FPGA AND CPU(msec)

Digit Face Object-CNN Object-BNN
FPGA 2.021 41.63 13.99 13.99
CPU 2.014 85.12 97.32 99.47
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(a) Digit
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(b) Object-BNN
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(c) Object-CNN
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(d) Face

Figure 2. Response time and execution time for the applications in our case study.
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(a) Execution Time
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(b) Response Time

Figure 3. Response Time and Execution Time for Computation with FPGA-based and CPU-based Edge

2) Execution Time: Tab. V lists the execution time of
FPGA and CPU for all the applications. It is reasonable
that the execution time of FPGA and CPU for application
Digit are very short and nearly the same. The execution time
of FPGA-based edge is 2.04x shorter than the CPU-based
edge for application Face and 6.96x for application Object.
Although our CPU-based edge is powerful, the FPGA-based
edge still performs better. We observe from the synthesis report
generated by Xilinx SDSoC Tool that for all the accelerators
we implement in our experiments, the utilizations of FPGA on-
chip resources is less than 35%, which means that when further
optimization by leveraging more FPGA on-chip resources, the

execution time on FPGA will be further reduced.
3) Energy Consumption: We assume that the energy con-

sumption on the edge router remains unchanged in both
the FPGA-based case and the CPU-based case for the same
application, because the edge router transfers equal size of data
under the same edge network condition during one interaction
in both cases. Thus, we do not add energy consumption of the
edge router to the total energy consumption. When measuring
the energy consumption of the CPU-based edge using the
powertop tool, we terminate all irrelevant processes to reduce
external influence as much as possible.

Fig. 4 shows the energy consumption of both the FPGA-
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Figure 4. Energy Consumption of the FPGA-based and CPU-based edge

based edge and CPU-based edge for the applications. We
observe that for each application, the power consumption of
the FPGA-based edge is smaller than that of the CPU-based
edge. In particular, using FPGA saves 16.2% of energy for
the Digit application, 16.1% for Object and 15.7% for Face
compared with CPU. As shown before, the FPGA-based edge
runs faster than CPU, so that the FPGA-based approach is
more energy-efficient.
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Figure 5. Energy Consumption on the FPGA Board

To more accurately estimate energy consumption of the
FPGA-based edge offloading solution, we obtain the FPGA
on-chip power using Xilinx Power Estimator 2017.2 which
analyzes the synthesis report of Xilinx SDSoC and estimates
the on-chip power of FPGA programs. We can see in Fig. 5
that the on-chip power is much lower than the total value,
only accounting for 29.8%∼33.9% of the total amount. This
is because there are many extra unused components running
on our ZC706 board that consume a lot of energy, which is un-
avoidable on most of today’s FPGA development boards. If the
unnecessary components can be removed (e.g. by designing a
new board only with the components for edge computing), the
total energy consumption will be further reduced.

C. No-Offloading versus Offloading

1) Response Time: We do not conduct experiments in the
scenario that the server program runs locally on the mobile
devices (the No-Offloading case). On the one hand, previous
research such as [1], [26] and [5] has clearly shown that, in

comparison with the No-Offloading case, the response time
of computation shortens when offloading them to the CPU-
based edge. On the other hand, our work points out that the
FPGA-based edge offloading outperforms the CPU-based edge
offloading in regard to the response time. Therefore, we can
safely conclude that the FPGA-based edge offloading solution
will outperform the non-offloading case.
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Figure 6. Energy Consumption of the Mobile Device

2) Energy Consumption: When it comes to the energy
consumption of mobile devices, the study [5] has pointed out
that the energy consumption of the mobile devices is greatly
reduced by offloading computation to any either edge or cloud.
We measure the power of the mobile device in different of-
floading cases when running Object and Face whose response
time are relatively longer among the three applications. We
use a Rockchip RK3288 board that runs Android 5.1 as
the mobile device in this case. The board has a 1.8 GHz
ARM Cortex-A17 processor and 2 GB memory. As shown
in Fig. 6, edge offloading reduces more energy consumption
than cloud offloading for mobile devices. Specifically, FPGA-
based edge offloading saves 22.4% and 34.6% of energy for
Object and Face respectively, compared with the 75-ms cloud
offloading case. As the network delay increases, offloading
to cloud makes the mobile device consume more energy.
We also observe that FPGA-based edge offloading and CPU-
based edge offloading exert similar influence on the energy
consumption of the mobile device.

V. DISCUSSION AND LIMITATIONS

The experimental results show that FPGA can be a desirable
choice in the context of edge computing. FPGA-based edge
offloading can effectively reduce the response time of interac-
tive applications. Compared with CPU-based edge offloading,
FPGA-based edge offloading also performs better in terms of
processing speed and energy consumption. It is convincing
that FPGA is an attractive choice for edge computing.

Our core target is to improve user experience for the inter-
active applications, so we need to know whether the response
time we achieved is good enough in terms of human percep-
tion. Previous work has derived “tight and loose bounds” of
target response time for different types of interactive applica-
tions [27]. The tight bound is an ideal target, below which



the users are “satisfied”. Above the loose bound, the users
become aware of slowness, which means the user experience
is significantly impacted. Specifically, for a object recognition
task, the response time range should be about 370∼1000 ms to
meet the average human performance [27]. We use this result
as the target response time range for our three applications,
because they are all detection or recognition-related. Fig. 2
shows that all the three applications meet the tight bound in the
FPGA-based edge offloading and CPU-based edge offloading
case, and FPGA-based edge offloading performs better. As
for the typical 75-ms case of CPU-based cloud offloading,
Face and Object only meet the loose bound. With the network
delay increasing, user experience will dramatically decrease
and finally unable to meet the loose bound. We can conclude
that FPGA-based edge offloading meet the requirements of
user experience for our applications very well.

In our experiments, there is no comparison between FPGAs
and GPUs, another widely-used hardware. In general, GPUs
can achieve higher throughput and the peak speed is ususally
faster than FPGAs in most cases. However, FPGAs can bring
about lower latency for a single request and consume less
energy at the same time. Previous work has already shown
the comparison of performance between GPUs and FPGAs.
The energy consumption of Tesla K40 GPU when running
a BNN is about 50 times of FPGA, while the speed to
process one image of GPU to run a BNN is only 8 times
faster than FPGA [8]. For sliding-window applications, FPGAs
can achieve speedup of up to 11x compared to GPUs, while
also using less energy [28]. The newest Intel FPGAs can
deliver 60% speedup and 2.3x better in performance/watt
compared with Titan X GPUs [29]. We can see that FPGA is
more energy-efficient in most cases. Besides, FPGA is more
flexible than GPU because of its feature of reconfiguration.
Considering these aspects, we believe that FPGA is a better
choice for edge offloading.

The applications in our experiments are all concerned with
computer vision. Yet nowadays, applications involving audio
and speech processing are springing up and becoming an
important part of interactive applications. The state-of-art
solutions for such applications are mostly based on deep learn-
ing and machine learning algorithms. And there has already
been research on accelerating audio and speech processing
applications using FPGAs [30], [9]. Therefore, we believe the
FPGA-based edge offloading is also capable of accelerating
applications involving audio and speech.

There are still some limitations about our FPGA-based edge
offloading method at this stage. First of all, our work does
not consider much about the unique features of the network
edge. We attempt to “use” FPGA at the network edge to make
applications run faster and validate the efficacy of it, rather
than optimize the workload considering the unique situation of
edge computing. Thus, the technical contribution in this paper
is rather limited. We leave trying to optimize performance of
the FPGA-based edge considering the unique characteristics
of the network edge in our future work. Second, developing
efficient FPGA accelerators is difficult. CPU programs are

familiar to most programmers and there is a lot of existing
CPU-based work for interactive applications. By contrast,
developing FPGA programs requires the programmer to have
good knowledge on both the application and FPGA. The
development cycle is much longer and it is hard to debug
hardware programs due to the poor code readability. Although
new tools like Xilinx SDSoC greatly reduce the difficulty,
there still exists a “gap” between the development of FPGA
and CPU programs. Third, the frequency of processors on
today’s FPGA boards (usually lower than 1.2 GHz) is much
lower than CPUs in laptops or VMs (higher than 2.3 GHz).
That is to say, the on-board co-processors may become a
bottleneck of FPGA-based edge offloading. Fortunately, these
problems can be addressed with the progression of FPGA
design tools and hardware performance. For instance, Intel
has already developed the “Intel Xeon + FPGA Platform” for
data centers [31], which use the powerful Intel Xeon processor
as FPGA co-processors for acceleration. We believe that there
will be more powerful FPGA-based hardware suitable for edge
computing in the future, and that FPGA-based edge offloading
will be an important part of edge computing.

VI. RELATED WORK

In general, computation offloading for interactive applica-
tions can be accomplished on cloud, network edge and client
side (mobile device) using different hardware, including CPU,
GPU, FPGA, etc.. There are several combinations of the
offloading target and the hardware.

Cloud Offloading. Cloud computing is a great step in the
history of computer. The MAUI system [32] enables fine-
grained offload of mobile code to the infrastructure. Nowa-
days, many big firms serve as large cloud providers, such
as Microsoft, Amazon, Alibaba, etc.. Apple’s Siri converges
CPU-based cloud offloading for speech recognition, hinting
at the rich commercial opportunities in this fast-developing
field. However, as the network condition between mobile
devices and remote cloud is unreliable, today’s compute-
intensive interactive applications with complex machine learn-
ing algorithms may lead to high latency and result in bad
user experience. Considering this, edge computing can be a
better choice. Prior work has investigated the acceleration
performance of FPGA and the FPGA-based cloud has been
transformed into actual production. The design of Sirius shows
that GPU-accelerated and FPGA-accelerated servers improve
the query latency on average by 10x and 16x respectively.
Microsoft has been deploying FPGAs in its Azure cloud [10],
creating cloud servers that can be reconfigured to optimize a
divergent set of applications and functions.

Edge Offloading. There have been great efforts leveraging the
benefits of edge offloading on a variety of applications using
the CPU-based edge. The proof-of-concept prototype of VM-
based cloudlets [1] suggests that this technology can help meet
the requirements for the rapid customization of infrastructure
for increasingly diverse applications. Work in [33] rigorously
explores the impact of mobile multimedia applications on



data center consolidation and offered experimental evidence to
support the claim in [1] and [26], where different applications
leveraged the VM-based cloudlets to accelerate the processing
progress, getting a relatively short response time and good
performance.

To the best of our knowledge, no other work provides
the detailed investigation of using FPGA for edge offloading.
Wenlu et al. conduct an overall investigation of edge com-
puting by offloading different compute-intensive applications
to CPU-based cloudlets both in WiFi and 4G LTE network
[5]. Their work has built up a not merely intensive but also
extensive comprehension on edge offloading. On the other
hand, there has been a lot of work on accelerating complex
algorithms using FPGA, such as [8], [34], [7], etc.. Our work
leverages FPGA as the target device of edge offloading for the
first time and conducts an investigation of its performance.

VII. CONCLUSION

Edge offloading is attractive to improving the user experi-
ence of today’s interactive applications, and FPGAs perform
very well on accelerating computationally intensive workloads
like deep learning algorithms because of its strong computing
abilities and energy-efficiency. This paper attempts to combine
the advantages of edge offloading and FPGA by deploying
FPGAs at the network edge to accelerate interactive mobile
applications, and proposed a new network-assisted computing
model, namely FPGA-based edge computing. Using the Xilinx
SDSoC Tool, we can effectively synthesize C/C++ code into
hardware programs to implement the FPGA accelerators for
different applications. Our experimental results show that
FPGA-based edge offloading can reduce the response time and
execution time by up to 3x and 15x respectively compared with
CPU-based edge/cloud offloading. What is more, our system
can save up to 29.5% and 16.2% of energy consumption on
mobile device and edge nodes respectively. While FPGA-
based edge offloading is still in its infant stage, we believe
that this paper sheds lights on considering to leverage new
devices and technologies to improve mobile applications in
the context of Edge Computing.
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