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Background: RL in Safety-Critical Tasks

- Reinforcement learning (RL) is an established approach for various tasks, including

safety-critical ones.
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- State-of-the-art RL methods use neural networks as policy representations.



Background: RL with Neural Network Policies is Vulnerable

Neural networks are vulnerable.

".):"*é\ hoe N Bt
R R e E LE

SR R AR R
s
;
:
:

ey o Vux a._ y

', <t

+.007 x  E

z sign(VaJ (6,2, 9))

“panda” “nematode”
57.7% confidence 8.2% confidence
[1] Goodfellow et, al. Explaining and Harnessing Adversarial Examples. ICLR 2015.
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Background: RL with Neural Network Policies is Vulnerable

Problems are more severe in RL as mistakes can cascade.

A hopper moves forward




Background: Certified Defenses

Certified Neural Networks in Supervised Learning
DiffAl (Mirman et al. 18),
k-ReLU (Singh et al. 19),
RNN Verification (Ryou et al. 21)

Defenses are still heuristic in RL
SA (Zhang et al. 20),
PA-AD (Sun et al. 22),

RADIAL (Oikarinen et al. 21)

Heuristic defenses are defeated by counter attacks.

Can we train a certifiable RL policy against arbitrary attacks?




Goal: Train Certifiable Robust Reinforcement Learning Policies

Challenges
- How to represent and
------------------------------------------- guantify worst-case attacks?

Actions: A We use abstract interpretation,

covering all the attacks.

- How to reason over the

g-attacks on O
black-box environment?

Observations: O, Reward: R



Goal: Train Certifiable Robust Reinforcement Learning Policies

Challenges
- How to represent and
Abstract Interpretation!'!: A well-established method quantify worst-case attacks?

to effectively compute bounds over functions.

We use abstract interpretation,

: covering all the attacks.
It can be used to certify neural networks!?.. verng
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[1] Cousot et, al. Abstract Interpretation. POPL 1977.
[2] Mirman et, al. Differentiable Abstract Interpretation for Provably Robust Neural Networks. ICML 2018.



Goal: Train Certifiable Robust Reinforcement Learning Policies

Actions: A

g-attacks on O

Observations: O, Reward: R

Challenges
- How to represent and
guantify worst-case attacks?

We use abstract interpretation,
covering all the attacks.

- How to reason over the
black-box environment?

Learn a white-box transition
representation of the
environment with the policy.



Carol: Certifiably Robust Reinforcement Learning
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Step 1: Train a NN represented

(verifiable) for the
black-box environment during
normal training.



Carol: Certifiably Robust Reinforcement Learning
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Carol: Certifiably Robust Reinforcement Learning

___________________________________________ | Step 1: Train a NN represented
1 model (verifiable) for the

: black-box environment during

| normal training.

: Step 2: Train the policy over the
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Abstract Interpreter
Actlons A*

.

Step 3: A symbolic RL algorithm:
RL": with the learnt symbolic
reward R”.

Observatlons 0" Reward: R*




Abstract Interpreter
Actlons A*

= oo

Observatlons 0" Reward: R*

Carol: Certifiably Robust Reinforcement Learning

Step 1: Train a NN represented
model (verifiable) for the
black-box environment during
normal training.

Step 2: Train the policy over the
NN model of the real
environment.

Step 3: A symbolic RL algorithm:
RL": with the learnt symbolic
reward R”.

Step 4: In each iteration: we use
the accumulative reward lower
bound to guide the training:
R# = LowerBound[RL*(A*, O,
R



Theoretical Bound of Reward

With probability 1 - ¢, the reward (R) under the worst attack is bounded by,

R > R# 1 Var[R#]

Ly —(1—(1—5E)T)C.



Theoretical Bound of Reward

With probability 1 - ¢, the reward (R) under the worst attack is bounded by,

L /Va:&R#] B (1 (- 5E)T) C.

R>R -2

1. The bound grows as the § shrinks.
=» We pay the price of a looser bound as we consider higher confidence levels.
2. The bound depends on Var[R*] and NN in an intuitive way.
= Higher variance makes it harder to measure the true reward, more samples make
the bound tighter.
3. As O increases, the last term grows.
=D A less accurate environment model leads to a looser bound.
4. The bound grows with T.
= Over longer time horizons, our reward measurement gets less accurate.



Results: Certifiable Accumulative Reward Bound

Reward
Bound under
Worst-case
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Time Horizon (T)



Results: Certifiable Accumulative Reward Bound

CAROL
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Results: Certifiable Accumulative Reward Bound
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Results: Certifiable Accumulative Reward Bound

Hopper CAROL
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Results: Certifiable Accumulative Reward Bound

Hopper CAROL
151, , & &~ M / L5
Reward 101 By B L&
Bound under o5+ ‘;l:-' é RL without Defense | os
Worst-case ./ 0¢ e B E=F § 0.0-
Attack o5 I I I o
o RL with Heuristic | 4=~

(%)}

10 15 20 25 Defense
Time Horizon (T) Time Horizon (T)




Summary: CAROL

CAROL: Certifiable Robust Reinforcement Learning with Long-Horizon Reward Bound

Key Idea: Abstract Interpretation for Verification in the Learning Loop

White-Box Environment Representation Learning

Code: https://github.com/chenxi-yang/carol



https://github.com/chenxi-yang/carol

Summary: CAROL

CAROL: Certifiable Robust Reinforcement Learning with Long-Horizon Reward Bound

Key Idea: Abstract Interpretation for Verification in the Learning Loop
White-Box Environment Representation Learning

Future: More Accurate and Scalable Certified RL

Code: https://github.com/chenxi-yang/carol



https://github.com/chenxi-yang/carol

Summary: CAROL Thank you!

CAROL: Certifiable Robust Reinforcement Learning with Long-Horizon Reward Bound

Key Idea: Abstract Interpretation for Verification in the Learning Loop
White-Box Environment Representation Learning

Future: More Accurate and Scalable Certified RL

Code: https://github.com/chenxi-yang/carol



https://github.com/chenxi-yang/carol

Backup Materials



Model Error

Model Error (&g)
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Bound Tightness

Hopper
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Certifiable Bound Physical Meaning

Hopper
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